
Google Hack Honeypot Manual
http://ghh.sourceforge.net

Contents
1.FAQ

1. What is GHH?
2. What is a Honeypot?
3. What are search engine hackers?
4. What kind of damage can be done?
5. Why should I implement GHH on my site?
6. How does GHH work?

2.Installation
1. Prerequisites
2. Choosing a Honeypot
3. Download
4. Installation
5. Global Configuration
6. Honeypot Configuration
7. Indexing

3.Usage
1. Reading Logs
2. Making Sense of It All
3. Multiple Honeypots

4.Advanced Usage
1. Custom Honeypots
2. GHH Log viewer
3. GHH and Security Policies

5.GHH Security
1. Secure Configuration Checklist
2. Index Avoidance
3. Security Policy Issues

1.FAQ
1.1What is GHH?

GHH is a reaction to a new type of malicious web traffic: search engine hackers. GHH is
a “Google Hack” honeypot. It is designed to provide reconaissance against attackers
that use search engines as a hacking tool against your resources. GHH implements
honeypot theory to provide additional security to your web presence.

1.2 What is a honeypot?
A honeypot is, to quote Lance Spitzner founder of the Honeynet Project:

 “An information system resource whose value lies in unauthorized
or illicit use of that resource.”

Simply put a honeypot is something that appears to be vulnerable, but in reality is
recording illicit use by malicious attackers.

GHH allows administrators to track malicious hosts: observe who is perpetrating the
attack and how it is being executed via the log. The data generated by this, or any other
honeypot can be used to deny future access to attackers, notify service providers of
attacks originating from their networks or act as an input for statistical analysis.

1.3 What are search engine hackers and why should I care?
Google has developed a powerful tool. The search engine that Google has implemented
allows for searching on an immense amount of information. The Google index has
swelled past 8 billion pages [February 2005] and continues to grow daily. Mirroring the
growth of the Google index, the spread of web-based applications such as message
boards and remote administrative tools has resulted in an increase in the number of
misconfigured and vulnerable web apps available on the Internet.

These insecure tools, when combined with the power of a search engine and index
which Google provides, results in a convenient attack vector for malicious users. It is in
your best interest to be knowledgable of, and protect yourself from this threat.

1.4 What kind of damage can be done?
A simple query on the Google search engine can reveal improperly secured sensitive
data:

Search: “# -FrontPage-” inurl:service.pwd

This simple search string will return plain text passwords for administrative access via
Microsoft's FrontPage. A misconfiguration in the FrontPage software and web server
results in this sensitive information to be available to anyone who either constructs the
search string, or visits an online database of malicious search strings. There are
hundreds of similar search engine hacks. A lack of foresight into security issues in web
applications are to blame.

1.5 Why should I implement Google Hack Honeypot on my
site?

GHH allows you to safely monitor attempts by malicious attackers to compromise your
security. The logging functions that GHH implements allows you, the administrator, to
do what you like with the information. You can use the attack database to gather
statistics on would-be-attackers, report activities to appropriate authorities and
temporarily or permanently deny access to resources.

1.6 How does Google Hack Honeypot work?
Reference http://ghh.sourceforge.net/introduction.htm for details on the intersection of
theory/practical concerns that drive GHH.

2.Installation
2.1 Prerequisites

A web server running Apache and PHP, IIS and .NET support coming in future release.

2.2 Choosing a Honeypot
The Download site <http://ghh.sourceforge.net> offers multiple types of honeypots to
emulate different types of GHDB signatures. You can pick one from the official GHH
site, or follow the directions in the “Custom Honeypot” section of this document to create
your own. By picking or creating a honeypot for a web application that is recently
discovered to be vulnerable, or otherwise less-well-known, there is less chance of your
honeypot being avoided by search engine hackers.

2.3 Download
The latest version of GHH will be available at the official project website located at
http://ghh.sourceforge.net. There will be many honeypots available to implement.

2.4 Installation
Follow these steps to install GHH onto your server:

1. GHH should be unzipped into a folder that is not in the document root of
your web server.

2. A file should be created for your GHH log, anywhere but your document
root. Example: /apache/ghhlog.csv Not: /apache/htdocs/ghhlog.csv
(if access to folders that aren’t in the document root isn’t available, use a
password protected folder, covered with .htaccess)

3. Continue to configuration section.

2.5 Global Configuration
Inside of the uncompressed installation package locate config.php. This file includes
one variable that need to be changed in order for GHH to work:

Change the $Filename variable to contain the path to your log file you created in 2.4.2.
Change the $RegisterGlobals variable to 'false' if you require register_globals to be
on in the server's php.ini (or if you are getting a blank page when viewing the honeypot
file).

2.6 Honeypot Configuration
There is a README.txt file in the folder you unzipped into your web server. Because
different honeypots may have different configuration instructions, this file is necessary
for each seperate honeypot. README.txt contains instructions to setup the particular
honeypot, and may be intricate depending on the complexity of the honeypot being
implemented. (i.e. a phpBB honeypot) Open the README.txt file in the file you
downloaded, and follow it’s configuration instructions.

2.7 Indexing
In order for the honeypot to work it must be visible to search engines. There are
different ways to accomplish this task. The GHH team recommends setting up a secret
hyperlink in the HTML of a page of your site. Add a link to a page that is currently
indexed by Google, or other search engines like so:

.

Where the “.” is the same color as the background of the page. This invisible link directs
search engines to crawl the page, but regular viewers of your site will not notice or visit
the link.

There are other options that will get the honeypot indexed include image tag inclusion:

<img src=”http://yourdomain.com/honeypot.php” width=”0”
height=”0”>

Now that the honeypot has been linked to it is time to set $SafeReferer variable. Set
this var equal to the page that the honeypot is linked from.

$SafeReferer is used to detect when someone clicks the hidden hyperlink. This
variable links with the “Crawler Detected” alert used in the logs. It signifies one of three
things.

1. A search engine indexed the link.
2. An innocent browser found the link and clicked it.
3. The link was crawled with a tool like wget or an offline browser.

These hits are more than likely a false-positives. GHH will look at the
“HTTP_REFERER” header and determine if a browser came from the $SafeReferer.

Search engines will not index your site immediately. Their spiders take time.

3. Usage
3.1 Reading Logs

The logs are done in the CSV format. (Comma Separated Values) Each field is
separated by a comma. The fields in the document include:

Tripped: The honeypot was accessed / tripped. (If you have multiple honeypots,
this will tell you which one was accessed)
Time of Attack: The time the honeypot was viewed.
Host: The IP address of the attacker.
Requested URI: The Uniform Resource Identifier made to reach your site.
Referrer: This will have the query used in the search engine in most cases,
alarming you to what the attacker attempted to find, and how they tried to find it.
The most important detail of the log.
Accepts: Contents of the Accept: header if there is one.
Accepts Charset: Contents of the Accepts_Charset header if there is one.
Accept Language: Contents of the Accept-Language .
Connection: Contents of the Connection: header from the attack request .
User Agent: The user agent of the attacker.
Signatures: The signature of attack the honeypot was able to determine from a
combination of browsers headers.

3.2 Making Sense of It All
Do not panick if your log file ($Filename) has a large number of requests in it.
Honeypots are designed to be accessed. This log is a potent source of information to
see how

3.3 Multiple Honeypots
Inside of each honeypot file, there is a variable for setting a common configuration file,
$ConfigFile. With multiple honeypots or honeypot files, you can include the same
standard configuration file and have each honeypot write to the same log file. The
honeypot’s name will appear as the first value in the logs.

4.Advanced Usage
4.1 Custom Honeypots

To make a custom honeypot, use the template file in the download section of the GHH
project page on Sourceforge. The link there will be available on
http://ghh.sourceforge.net. This is a template file for a simple honeypot, and will be
setup as a dummy vulnerable page as an example. Download the “Custom Honeypot
Template” File from a mirror and find template.php file inside. Look for the “Begin
Custom Honeypot Section” of the code.

The first task is to change the $HoneypotName variable to reflect the name of your
honeypot. This will appear in the logs when your honeypot is visited over the web. The
next line is an echo statement; this outputs the source HTML of the honeypot.
Template.php uses PHP Shell 1.7 as an example. To customize file replace the source
found in the echo code with the source another vulnerable web application.

Once the honeypot HTML is echo'd to the attacker, it’s time to determine what means
he/she took to find our honeypot. This is done by checking the HTTP_REFERER header
sent by the attacker’s browser. If there is no HTTP_REFERER header, the default
signatures will identify it.

You can retrieve the HTTP_REFERER header sent by the attacker with the $Attack
['referer'] variable. There are two examples in the template. The first searches for the
name of the vulnerable target in the HTTP_REFERER string, because popular search
engines include the query in the URL of their query results. The second example
searches for the Google Hacking Data Base query in the HTTP_REFERER string, which
highlight that the attacker most likely found the honeypot using a GHDB signature.
Whatever signatures you decide to create, append them to the $Signature[] array and
they will be put in the logs. The two signatures included in the template have examples
of this. You should remove or edit the example signatures.

4.2 GHH Log Viewers
There will be a sample log viewer on the Download page <http://ghh.sourceforge.net> to
provide a front-end to the log file. This feature is being worked on currently and is
not available at relese. It is not recommend to use this viewer if you have the
resources available to parse the logs another way. The reason the sample viewer is not
recommend is because it needs to be placed on the web.

Options for the time being:

http://www.google.com/search?q=csv+parser

4.3 GHH and Security Policies
Our number one priority is to serve as a research tool which can be used to develop
security policy. All security policies derived from GHH logs should be carefully
scrutinized because false positives are possible in all honeypots and GHH is no
exception. Contact the GHH team if you have queries related to honeypot policy.

5.GHH Security
5.1 Secure Configuration Checklist

In order to ensure that GHH is secured against attacks itself, implement and verify that
the following measures are working as noted:

- The log file cannot be reached by URL without authentication [outside the
document root or protected in a .htaccess protected directory].
- A .phps file extension won’t reveal your honeypot’s source code.
- Your security policies will not introduce vulnerability if the honeypot is
fingerprinted.

5.2 Index Avoidance
If it is a requirement to place the log file and config file in the document root of a web
server, then here are some tips to protect your log file and config.php file:

- Place your log and config.php file in a password protected directory, using a
.htaccess or similar authentication mechanism.
- Verify sure directory listing is disabled, or else place a index.html or index.php
file in the directory to prevent the contents of a directory from being displayed. If
you password protect a directory, this should not be necessary.

5.3 Security Policies
As said previously, GHH is meant to be a research tool to help develop security policy.
By creating a script that automates a security policy based on the GHH log file you may
introduce vulnerability to your network. It cannot be assumed that GHH logs do not
contain false positives, and because of this policies should be carefully developed when
GHH logs are involved. Policy is important!

– The GHH Team
– http://ghh.sourceforge.net

